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ABSTRACT 

The need for submarines to execute communications at speed and depth (CSD) is a vital 

link in our nation’s and our allies’ defense network.  A promising method to do this 

without limiting the inherent stealth and advantage of submarines is to utilize Deep 

Seaweb, an underwater acoustic communication network.  The challenge is to be able to 

optimally employ such a network in a constantly changing environment.  In particular, 

our goal is to develop a network that is resilient to a given number of adversary attacks 

that can disable individual nodes.  To this end, we build and solve a defender-attacker-

defender (DAD) optimization model that provides the optimal location of repeater nodes 

that maintains as much of the function of the network as possible, even after a worst-case 

attack.  We analyze four initial basic network configurations and compare the resulting 

optimum node placements when the network is not subject to attack, when the network is 

subject to two attacks, and when the flow of each network configuration is completely 

blocked by attacks. 
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EXECUTIVE SUMMARY 

Communication among our forces is a fundamental requirement for national defense.  

There have been vast resources dedicated to improving, fortifying, encrypting, and 

expanding the communication resources available to the warfighters of all communities 

and military branches.  Elaborate networks of satellites and aircraft allow the ground 

troops, airborne troops, and surface sailors to maintain two-way communications with the 

chain of command.  Even the forces below the surface of the ocean have methods of 

ensuring that they have fairly recent information from the chain of command.  Even with 

the time latency involved, it is still sufficient to maintain the big picture and carry out the 

mission. 

The current method of obtaining this information involves either raising a mast 

while at periscope depth or surfaced or deploying a receiver and transmitter or transceiver 

while submerged.  These options place restrictions on the submarine that inhibit the 

submarine’s ability to carry out mission tasking.  Finding methods for submarines to 

maintain two-way communications at speed and depth (CSD) has been a high priority for 

the United States Navy to better capitalize on the strengths of this great asset.  One of the 

available options for CSD is utilizing a Deep Seaweb network for acoustic underwater 

communications.  The Deep Seaweb network has the potential to be a crucial link in the 

FORCEnet concept that is shaping the way information is shared among all the players in 

current and future military operations. 

Seaweb has been successfully employed in more than fifty sea trials.  One of the 

aspects that is still being developed is utilizing the Seaweb technology in the deep sound 

channel (DSC) to allow greater spacing between acoustic modems and allow the 

technology to be utilized in the open ocean with submarines and other underwater 

vehicles. 

We first develop a network design model that takes a given set of access points 

and gateway nodes and places a fixed number of modems to minimize the number of 

undelivered packets from the access points.  As a secondary objective, the model 
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minimizes the total number of links used in transmissions from access points to any 

gateway node, to create an efficient network.  This basic model does not account for 

potential attacks, but because it considers both the design of the network and the 

operation of the network (through flow variables that model the route taken by messages 

from each access point), it provides a basis for a tri-level optimization model, called a 

defender-attacker-defender (DAD) model, which determines a network design that is 

resilient to the worst-case attack that could be mounted against that design.  

This thesis executes the algorithm on four different initial network configurations 

to compare the resiliency of various network topographies and analyzes three attack 

scenarios for each network configuration: no attacks, two attacks, and enough attacks to 

completely block all flow in the network.  The resulting network design with no attacks 

provides the basis for the effect of the attacks on each configuration.  Networks that have 

separation among the destination or gateway nodes with at least some of the access point 

or source nodes near the middle of the area are more resilient.  Also, when the destination 

nodes are not co-located, or at least have some geometric separation, such as opposite 

sides of grid, it requires more attacks to completely block the flow through the network. 

Our models generalize the concept of k-connectivity used in the designs of 

communication networks in that they can still provide network designs that retain some 

functionality, even if some of the sources are disconnected from the destinations.  We 

find that the designs provided by our model and algorithm make sense, but that some of 

these designs can be quite costly in terms of the number of repeaters required to provide 

the desired level of resilience.  Finally, the algorithms can take quite a while to solve 

larger versions of these problems, and there is much work to be done in making these 

algorithms (and possibly models) more efficient. 
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I. INTRODUCTION  

A. BACKGROUND 

Communication among our forces is a fundamental requirement for national 

defense.  Over the last several decades, it has become possible for all ground troop 

members to carry handheld radios that enable the accurate and timely flow of information 

both up and down the chain of command.  This has proven to be advantageous, making it 

possible for every land unit to maintain near instantaneous communications with 

headquarters.  The aviators have sophisticated equipment to ensure that they have timely 

information regarding target locations, rules of engagement, and situational awareness.  

Those sailors on the sea surface have sophisticated equipment to maintain two-way 

communications with the chain of command.  Elaborate networks of satellites and aircraft 

tie all these forces together. 

There is one facet of our communications network that is not as robust as the 

others: the link to submerged submarines.  Even though our forces below the surface of 

the ocean have methods of ensuring they have fairly recent information from the chain of 

command, there is still some time latency involved.  Although it is not up to the minute, it 

is generally only a few hours old and is sufficient to maintain the big picture and carry 

out the mission.  The importance of submarines is emphasized in A Cooperative Strategy 

for 21st Century Seapower and the Naval Operations Concept for 2006 and 2010.  Given 

the importance of communications, it is imperative to ensure that this vital link to our 

submarine troops is fortified, improved, and encrypted to ensure that sensitive 

information does not fall into the wrong hands and lead to our disadvantage both on and 

off the battlefield.  Communication with submarines without compromising their inherent 

stealth and ability to effectively carry out the mission remains a challenge.  Finding 

methods for a submarine to maintain real-time, two-way communications at speed and 

depth (CSD) has been a high priority for the United States Navy in recent years to better 

capitalize on the strengths of this important asset. 
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The current options for CSD involve strict speed and depth limitations because 

the submarine must extend a receiver and transmitter or a transceiver.  This can be done 

by 1) raising a mast while at periscope depth (PD) or surfaced, or 2) deploying a receiver 

and transmitter or a transceiver from the submarine while submerged.  The first option 

places the submarine at increased risk while at periscope depth and while surfaced greatly 

compromises the stealth of the submarine and their ability to carry out the mission.  The 

second option involves strict speed and depth restrictions to deploy a receiver and 

transmitter or a transceiver.  The device can then be useful for transmitting information 

only while it remains tethered to the submarine, which limits the submarine in speed and 

depth as long as the device remains connected.  An alternative means of communication 

without these constraints would empower submarines to better carry out mission tasking. 

There are several advanced methods of CSD that are in the research and 

development phase.  One such method is using lasers to establish two-way 

communication between the submarine and an airborne platform.  The disadvantage of 

this method is that either the submarine is required to be in a given area for an extended 

length of time so the message can be systematically broadcast over the specified area and 

the submarine can then send any outgoing information or it must come to PD to indicate 

its position.  The submarine could also remain at PD and receive and transmit 

information by radio frequency.  It could take advantage of the higher bandwidth 

available from the laser, which would require a shorter time at PD. 

Another CSD option is long-range acoustic communications.  There are several 

possibilities for this option.  One of them uses towed arrays, source moorings, and 

moored vertical-line-array receivers, but the towed array limits the maneuverability of the 

submarine and the low frequency limits the communications bandwidth and interferes 

with sonar contacts.  It is also possible to use long-range extremely low frequency 

acoustic transmitters.  This method is only one-way and, due to the high power required 

to transmit great distances, the transmitters must be very large with either a short battery 

life or shore based which limits the application when the submarine ranges too far from 

land.  Each of these methods imposes various restrictions on the submarine. 
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Utilizing a Deep Seaweb network for acoustic communications is another 

possibility for two-way communications with the submarine that does not have the same 

limitations as the current options.  This method could utilize the larger bandwidth of 

radio frequencies or lasers for the gateway buoys. 

B. POSSIBLE APPLICATIONS OF SEAWEB 

There are many possible applications for underwater acoustic communications. 

Schrope in Business 2.0 illustrates one of these concepts is in Figure 1. 

 

Figure 1.  Pictorial representation of the potential applications of 

underwater acoustic communications (From Schrope 2000). 

Another application is the FORCEnet concept.  Both Ackerman (2004) and 

Browne (2004) discussed the significance and the challenges facing the Navy in 
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developing this concept.  This complex endeavor has been the focus of the Navy’s 

network-centric warfare thrust for more than a decade now.  This concept, illustrated in 

Figure 2, ties together all the warfare communities allowing them to share information as 

close to real time as possible.  Utilizing this more timely information flow empowers the 

military forces of all communities and branches to work together in a manner that would 

otherwise be impossible. 

 

Figure 2.  Illustration of the FORCEnet concept 

(From Rice unpublished Seaweb presentation). 

C. PAST RESEARCH 

There has been significant research done on the multiple facets of underwater 

acoustic communications.  Biediger (2010) explored the environmental considerations for 

passive detection of maritime targets.  Kriewaldt (2006) analyzed the communications 

performance of a wide-area network application of Seaweb.  Goh (2010) analyzed 

various network protocols of the underwater local area network known as “Seastar.”  Ong 

(2008) analyzed the initialization process of spontaneously deployed versions of Seaweb.  

Zinkhon (2009) utilized a node localization algorithm to estimate the relative locations of 

all nodes in an ad hoc Seaweb placement.  Green, Rice, and Merriam (1998) explored the 
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aspects involved in the physical design of the modems used in the Seaweb networks.  

McGirr et al. (1999) highlighted some of the key aspects involved in the network design 

and analysis of the deployable autonomous distributed system (DADS). 

Grimmett (2007) analyzed the message routing criteria for underwater acoustic 

communications networks and utilized Dijkstra’s algorithm to solve for hypothetical 

network configurations.  Li et al. (2009) presented a multiple-input–multiple-output 

(MIMO) system design that applies spatial multiplexing with orthogonal-frequency-

division-multiplexing (OFDM) signals.  Nicholas (2009) explored the challenges of 

quickly and optimally designing a wireless mesh network.  Shankar (2008) explored the 

challenges of operating and jamming wireless mesh networks.  Sanchez (2010) described 

one of the processes used by Internet Service Providers (ISPs) when designing and 

maintaining internet networks.  Bohner (2003) used a distributed underwater acoustic 

networking (UAN) protocol for ad hoc deployment of stationary and mobile nodes across 

a relatively wide area.  Sözer, Stojanovic, and Proakis (2000a) discussed using an 

optimized network engineering tool (OPNET) modeler to design and test an underwater 

acoustic ad hoc network.  Proakis et al. (2003) discussed several design considerations 

for shallow water acoustic networks to maximize throughput and reliability with 

minimum power consumption. 

Belenguer et al. (2006) applied a branch and cut method to the location routing 

problem (LRP).  Barreto (2007) implemented cluster analysis to minimize the routing and 

location costs of a LRP.  Berger, Coullard, and Daskin (2007) utilized a set-partitioning-

based formulation of an uncapacitated location-routing model with distance constraints.  

Brown, Carlyle, and Wood applied defender-attacker-defender (DAD) optimization to 

terror risk management and mitigation in 2008 in appendix E of the Department of 

Homeland Security’s Bioterrorist Risk Assessment: A Call for Change.  Alderson et al. 

(2011) developed a DAD sequential game model for infrastructure systems that improves 

an infrastructure’s resilience to attacks from an intelligent adversary.  Brown et al. (2006) 

applied bi-level and tri-level optimization models to fortify critical infrastructures against 

terrorist attacks. 
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II. PHYSICS BACKGROUND AND SUMMARY 

A. ACOUSTIC UNDERSEA NETWORKS 

 The requirement for wide-area undersea surveillance in littoral waters using a 

deployable autonomous distributed system (DADS), such as shown in Figure 3, has 

motivated the development of Seaweb (Rice and Green 2008).  The littoral surveillance 

application typically involves water depths up to 300 meters and node separations up to 5 

kilometers with data packets of about 1,000 information bits (McGirr et al. 1999). 

 

Figure 3.  A deployable autonomous distributed system (DADS) 

supported by a Seaweb network (From Rice 2000). 

There are several aspects of the water environment that constrain the performance 

of an underwater acoustic communications network: the relatively slow speed of sound 

through water, multipath propagation, ambient noise, limited spectral bandwidth, and 

ambient noise (Rice and Green 2008).  Nevertheless, Seaweb has been shown to be a 

viable option for CSD. 
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B. SEAWEB 

Seaweb has evolved into an underwater acoustic network that can be used for 

communications, maritime surveillance, oceanographic monitoring, underwater 

positioning, and many other purposes as depicted in Figure 4.  Battery-powered nodes in 

the Seaweb network can potentially be launched from various platforms such as 

submarines, ships, aircrafts, unmanned underwater vehicles (UUVs), or unmanned aerial 

vehicles (UAVs), allowing great flexibility in deploying an appropriate combination of 

node types and concentration for any given mission and environment. 

 

Figure 4.  Overview of the basic Seaweb concept (From Grimmett 2009). 

The capability of two autonomous underwater vehicles (AUVs) to maintain two-

way communications was demonstrated in 1993 by a field study conducted in Barrington, 

New Hampshire (Chappell et al. 1994).  Seaweb built upon that result and expanded it to 

an underwater acoustic network.  Rice summarized the Seaweb basic concept of 
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operation as, “Telesonar wireless acoustic links [that] interconnect distributed undersea 

assets, potentially integrating them as a unified resource and extending ‘net-centric’ 

operations into the undersea environment” (2000).  Seaweb is the real world application 

of undersea wireless networks (Sözer, Stojanovic, and Proakis 2000b) to include fixed 

and mobile nodes, intelligent master nodes, and manned command centers.  It also 

provides a good coordinating infrastructure for Command, Control, Communications, 

Computers, and Intelligence, Surveillance, and Reconnaissance (C4ISR) for any mission 

in an ocean environment. 

1. Seaweb Components 

Seaweb has several basic components: backbone, peripherals, gateways, and 

servers.  The backbone is a set of autonomous, stationary nodes (e.g., deployable 

surveillance sensors, sea mines, relay stations, etc.).  The peripherals are the mobile 

nodes (e.g., unmanned underwater vehicles (UUVs) to include swimmers and crawlers) 

and specialized nodes (e.g., bi-static sonar projectors).  The gateways connect the various 

command centers whether submerged, afloat, airborne, or ashore.  For Seaweb, these 

gateways are telesonar nodes to link the submerged acoustic network to other airborne, 

terrestrial, and satellite networks.  The servers are co-located with the manned command 

centers and act as an interface to the submerged acoustic network as shown in Figure 5.  

The server keeps an archive of all inbound data packets while allowing client stations 

read-only access over the internet.  Only one “super” server reconfigures and controls the 

network as needed (Fletcher et al. 2003 and Rice et al. 2001). 
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Figure 5.  The function of the Seaweb server is to connect the submerged network with 

manned command centers (From Fletcher et al., 2003 and Rice et al. 2001). 

The architecture of Seaweb is hierarchical with three fundamental layers of 

interest: the physical layer, the media-access-control (MAC) layer, and the network layer.  

These communication layers provide a functionality that can support higher application-

specific layers (Rice 2000). 

Adaptive telesonar links are established asynchronously using a half-duplex 

handshaking protocol depicted in Figure 6.  The initiating node, A, transmits a request-to-

send (RTS) signal using a frequency-hopped spread spectrum (FHSS) series or a direct-

sequence spread spectrum (DSSS) pseudo-random carrier specific to the receiver node, 

B.  The initiating node could also issue a RTS when broadcasting or linking to unknown 

nodes.  Upon receiving the RTS, node B comes out of a low-power sleep mode, 

demodulates the signal, and processes the signal to estimate the channel scattering 

function and signal excess.  Node B then acknowledges the RTS by sending a FHSS or 

DSSS clear-to-send (CTS) signal to node A specifying the data-packet modulation 

parameters based on the existing channel conditions.  After this concise RTS/CTS 
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handshake, node A transmits the data packet(s) taking full advantage of the optimal bit-

rate, modulation, coding, and source level (Rice 2005). 

 

Figure 6.  The Seaweb half-duplex handshake protocol (From Rice 2005). 

An understanding of the physical layer is reached through measuring existing 

transmission channel conditions and numerical propagation models.  Combining this with 

digital signal processor (DSP) modulators and demodulators allows the exploitation of 

the unique characteristics of the underwater channel while directional transducers 

improve modem performance (Rice 2000). 

The MAC layer’s purpose is to support secure, low-power, point-to-point 

connectivity.  The handshaking protocol just described is well suited to wireless half-duplex 

networking with slowly propagating channels while providing addressing, ranging, channel 

estimation, adaptive modulation, and power control.  It is necessary for the telesonar links to 

adapt to a changing environment while allowing for bi-directional asymmetry.  

Asynchronous multiple-access to the physical channel can be provided through spread-

spectrum modulation using code-division multiple-access (CDMA), time-division multiple-
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access (TDMA), or frequency-division multiple-access (FDMA) methods.  The Seaweb 

network is then configured and maintained through the master nodes to allow network 

adaptation following node failure, addition of new nodes, and incorporation of mobile nodes.  

As the telesonar links are established, range measurement, range-rate measurement, and 

clock-synchronization are obtained which allows network initialization, navigation, and 

optimization.  This process is described in Figure 7 (Rice 2000). 

 

Figure 7.  The organization process of the Seaweb network (From Rice 2000). 

An optimized network engineering tool (OPNET) is used to simulate the Seaweb 

using basic ocean acoustic propagation assumptions allowing various network arrangements 

and protocols to be explored and refined in the laboratory (Raysin et al. 1999) while 

controlled sea trials improve telesonar signaling technologies (McDonald et al. 1999). 

Seaweb then combines the results from this research with the resources of 

extended ocean experiments.  The annual Seaweb experiments have been able to verify 

system analysis and promote essential technologies to ensure that Seaweb continues to 

evolve toward higher reliability and increased functionality.  The goal of these 
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experiments is to provide a means of implementing and testing telesonar modems in 

networks using various modulations and networking algorithms.  As improvements are 

noted and implemented, the ultimate goal can be reached: an acoustic network that is 

self-configuring with links that automatically adjust to the existing environmental 

conditions by properly selecting the optimal transit parameters (Rice 2000). 

2. Seaweb Implementations 

Seaweb technology was used in the May Sublink 2000, the April ForeFRONT-2 

and June FRONT-2, both during the same year (Codiga et al. 2000).  This extended use 

allowed collection of valuable long-term performance data.  Buzzards Bay, 

Massachusetts, shown in Figure 8, was the site for the annual Seaweb experiment for the 

first three years, 1998, 1999, and 2000.  This site was chosen since it is within line-of-

sight radio contact with Datasonics and Benthos in western Cape Cod (Rice 2000). 
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Figure 8.  Buzzards Bay, Massachusetts was the test site for 

Seaweb ’98, ’99, and 2000 (From Rice 2000). 

There are several important results from Seaweb ’98.  One of the most important 

is that the network consistently provided high quality data.  Only approximately 2% of 

the data packets delivered to the command centers had uncorrected bit errors, which came 

from the intentional collisions at the master node.  There were several important network 

concepts illustrated by Seaweb ’98:  1) the ability to store and forward data packets, 2) 

transmit retries and automatic repeat request, 3) packet routing, and 4) mitigated 

minimize multi-access interference (MAI) through FDMA node cell-like grouping.  

Several application DADS concepts were also illustrated: 1) networked underwater 

sensors, 2) wide-area coverage, 3) acoustic/radio interface, 4) robustness in a shallow-

water environment, 5) robustness during shipping noise, 6) use of sleep modes for low-
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power node operation, 7) economic feasibility, and 8) remote control.  Seaweb ’98 also 

highlighted the difference between acoustic and conventional networks:  Limited power, 

low bandwidth, and long propagation times (Rice 2000). 

Seaweb ’99 continued the advancement of undersea wireless networks.  All links 

in the network used a simple telesonar handshake protocol allowing automatic packet-

collision resolution through transmitter retries or receiver repeat requests.  The multi-

access strategy used a variation of FDMA, which was an important step toward self-

configuration and precedes the use of secure CDMA spread-spectrum unique codes 

assigned to each node during initialization.  Node-to-node ranging was simplified.  One 

of the most important aspects of Seaweb ’99 was the implementation of a Seaweb server, 

run on a laptop computer, to continually monitor, display, and log network status.  The 

server also bridged the connection between a Bell Atlantic cellular digital packet data 

(CDPD) gateway node over the internet and a radio gateway link to establish a gateway-

to-gateway route through the server.  The server was able to remotely reconfigure 

network routing, which is one important step closer to self-configuration and dynamic 

network control. 

There were several implementations of Seaweb technology between Seaweb ’99 

and Seaweb 2000: the ForeFRONT-1 (Front-Resolving Observation Network with 

Telemetry) (November 1999), FRONT-1 (December 1999), ForeFRONT-2 (April 2000), 

Sublink 2000 (May 2000), and FRONT-2 (June 2000) experiments.  These greatly aided 

the firmware transition from the ATM875 modem, which was used in Seawebs ’98 and 

’99, to the ATM885, which was used in Seaweb 2000 and has a more powerful DSP and 

more memory (Rice 2000). 

Seaweb 2000 firmware used the foundation of a structured protocol to map the 

network and MAC layers onto the physical layer based on channel conditions.  It used 

seven utility packet types while OPNET simulations were used to explore expanding that 

number.  The initial handshake utilized the RTS/CTS combination, forming a basis for 

adjusting the data modulation for channel conditions.  Data packets are sent following the 

RTS/CTS interchange.  Seaweb 2000 used a hybrid CDMA/TDMA approach vice the 

FDMA to help avoid MAI.  It also implemented two parallel Seaweb networks, the one at 
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the command center is airborne and the other one in Buzzards Bay is water-borne, 

allowing troubleshooting firmware and code change testing prior to at-sea downloads.  

All modems now logged the data in an internal buffer allowing the study of individual 

nodes following sea trials.  The modem firmware used additional channel-estimation 

diagnostics (e.g., SNR, multipath spread, Doppler spread, range rate, etc.), demodulation 

statistics (e.g., bit-error rate, automatic gain control, intermediate decoding results, power 

level, etc.), and networking (e.g., data packet source, data packet sink, routing path, etc.) 

(Rice 2000). 

The data logging allows a modem to archive the data packets.  This means that a 

node could be designated as a sink node and collect all packets from the network until 

requested by a gateway, which could be a ship arriving on station.  An internal watchdog 

timer provides a means to automatically reboot a modem if required.  SignalEx, an 

applied telesonar research effort, was hosted by Seaweb 2000 with shared resources and 

empirical test control.  Several experimental network tests explored acoustic navigation 

methods for node localization, cost functions for optimized network routing, and statistics 

for network traffic analysis.  Seaweb 2000 products were implemented in FRONT-3.  

Overall, Seaweb 2000 made major contributions toward a self-configuring, wireless, 

undersea acoustic network (Rice 2000). 

C. SUBLINK 

The associated Sublink experiments incorporated a submarine as a mobile node in 

the Seaweb networks.  Sublinks ’98 and ’99 explored acoustic communications with the 

research submarine USS Dolphin (AGSS 555), telesonar test beds, gateway buoys, 

stationary autonomous bottom nodes, and the R/V Acoustic Explorer.  These experiments 

demonstrated two-way communications with a moving submarine utilizing 

developmental telesonar technology (Rice 2000). 

These experiments also measured communications figures of merit as Dolphin 

varied her distance from telesonar test beds, depth, speed, and telesonar modem settings.  

Onboard the Dolphin, a COTS underwater telephone, EDO 5400, was integrated with the 

organic WQC-2 HF transducers located on the sail, keel, and foredeck.  Seaweb acoustic 
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modem electronics were integrated within the EDO 5400 chassis. The Seaweb operator 

station was adjacent to the sonar room with a serial connection to the EDO 5400. The 

Seaweb station included a Seaweb server and a data recorder. This station allowed wireless 

communications with autonomous network nodes as illustrated in Figure 9 (Rice 2000). 

 

Figure 9.  Illustration of the telesonar link between a submerged submarine 

and an autonomous off board device (From Rice 2000). 

Sublinks ’98 and ’99 were staged on the Loma Shelf, 10 km west-southwest of Pt. 

Loma, San Diego, in 150 to 250 m water.  Both experiments used the ATM875 modem 

and all acoustic communications were within the 8 to 10.5 kHz band to ensure 

compatibility with the WQC-2.  Acoustic Explorer was the afloat command center that 

supported the telesonar test bed operations.  It was moored south of the test beds to 

monitor Dolphin’s transmissions using an over-the-side transducer coupled with a deck 

modem.  Dolphin’s sonar acted as an acoustic gateway while the Seaweb server 

interfaced with her command center.  The server interpreted the outgoing messages and 
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commands, converted them to ASCII data packets, added the necessary headers and 

routing information, and directed the transmissions to a destination node.  The server also 

interpreted, time stamped, and logged incoming messages while providing a graphic user 

interface (Rice 2000). 

Sublink 2000 tested acoustic communication among Dolphin, seafloor based 

telesonar test beds, a moored RACOM-3 (radio acoustic communications) gateway buoy, 

telesonar listening nodes, and nodes hung over the side of the moored Acoustic Explorer 

as illustrated in Figure 10 (Rice 2000). 

  

Figure 10.  Illustration of the Sublink 2000 setup (From Rice 2000). 

A shore-based radio repeater provided internet links for the gateways at the 

RACOM buoy and the Acoustic Explorer.  This experiment tested the links between all 

network node combinations and varied the signaling and channel geometries using the 

ATM885 telesonar modem (Rice 2000). 

Some of the highlights of this experiment are as follows.  Aboard Dolphin, the 

ATM885, the EDO 5400, and the WQC-2 were successfully integrated.  Telesonar 
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communications from Dolphin to the testbed were established at ranges up to 10 km but 

the same links from the telesonar testbeds to the Dolphin were not as reliable due to 

relatively lower SNR from lower source levels and higher receiver noise levels. The 

TDMA signaling schedule was executed flawlessly. SignalEx transmissions were 

performed using a variety of waveform suites.  SignalEx and ATT9 modulation suites 

were successful between two testbeds with 7 km separation and between testbeds and 

Dolphin at speeds up to 5 knots.  Emails from Dolphin were delivered to the Office of 

Naval Research, Submarine Development Squadron Five, and the family of a young 

sailor while submerged and transiting by utilizing telesonar transmissions, the RACOM 

gateway buoy, and the Seaweb server (Rice 2000). 

In June 2001, during Fleet Battle Experiment – India, a submarine navigated a 14-

node Seaweb network with two RACOM buoys on the Loma Shelf near San Diego, CA 

as illustrated in Figure 11.  During this exercise an email was sent from a submerged 

submarine to an ashore command center (Rice et al. 2001).  This particular Seaweb 

implementation was analyzed by Hartfield in 2003 in his master’s thesis. 
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Figure 11.  During Fleet Battle Experiment – India in June 2001, a 14-node Seaweb 

network undersea grid was installed on the Loma Shelf adjacent to San 

Diego.  Mobile positions near the nodes are indicated by the submarine icon 

(Rice et al. 2001). 

In February 2003, Seaweb 2003 was conducted when the Q272 Seaweb network 

was successfully deployed in an experiment conducted with Defence Research and 

Development Canada (DRDC) in the Eastern Gulf of Mexico with three Autonomous 

Underwater Vehicles (AUVs), six repeater nodes, and two gateway nodes as shown in 

Figure 12.  In this experiment, gliders were fitted with telesonar modems and utilized as 
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mobile nodes.  These gliders were manufactured with radio communication equipment, 

which made them effective mobile gateway nodes without the vulnerability of moored 

gateway buoys (Bachmeyer et al. 2004). 

 

Figure 12.  In February, the Seaweb 2003 Q272 Seaweb network in the Eastern Gulf of 

Mexico included three AUVs, six repeater nodes, and two gateway buoys 

(From Bachmeyer et al. 2004). 

In Seaweb 2004, an experiment with 40 nodes was conducted where the reliability 

of underwater communications was shown as connectivity was maintained despite two 

hurricanes and severe trawling (Kriewaldt 2006).  The initial location of the nodes is 

shown on the left and the final location is shown on the right of Figure 13. 
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Figure 13.  Seaweb 2004 with 40 nodes. Figure on the left shows the planned deployment, 

while the right hand figure shows the final position following hurricanes and 

trawling (From Rice and Green 2008). 

In May 2005, the node-to-node acoustic ranging capability of Seaweb networked 

modems as a mechanism for tracking a UUV mobile node relative to a fixed undersea 

grid was tested in the ARIES Experiment (Acoustic Radio Interactive Exploratory 

Server) in Monterey Bay shown in Figure 14.  When the UUV is submerged, tracking 

was accomplished by triangulation from the fixed nodes.  When surfaced, Seaweb 

tracking quality was compared to GPS position.  This comparison produced reliable 

results and showed the viability of the Seaweb network (Ouimet, Hahn, and Rice 2005). 
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Figure 14.  The May 2005 Seaweb ARIES (Acoustic Radio Interactive Exploratory 

Server) Experiment in Monterey Bay (From Ouimet, Hahn, and Rice 2005). 

The general application of the Seaweb infrastructure is well adapted for the use of 

modem-based navigation aids.  This concept allows the use of the acoustic modems to 

pass to a UUV its geoposition while also providing full connectivity to the outside world.  

The combination of acoustic communications and modem-based navigation aids is 

illustrated in Figure 15, which shows a UUV (or a surface ship) simultaneously 

reacquiring a Smart Marker and being directed by the Directional Acoustic Transponder 

(DAT) (Green 2007). 
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Figure 15.  Conceptual operations among a UUV, surface ship, Directional Acoustic 

Transponder (DAT), and Smart Marker (From Green 2007). 

In May 2009, the Seaweb network was implemented in the San Francisco Bay.  

This pilot experiment demonstrated a practical application of real-time underwater 

acoustic networks.  Despite the difficult environment, the network was successfully 

deployed and for two weeks was able to gather current and other environmental data that 

were valuable in understanding the unique environment in the bay. However, the live 

networking piece of the experiment was not successful and this is where the research in 

optimally employing these networks is so valuable to allow the full use of the information 

and advantage that can be gained through these underwater acoustic networks.  Figure 16 

shows the implementation of San Francisco Bayweb 2009 (Ramp et. al. 2009). 



 25 

 

Figure 16.  The collaboration of many universities and state and federal agencies came 

together in the implementation of San Francisco Bayweb in May 2009 

(From Ramp et. al. 2009). 

The Seaweb network has been successfully deployed in over 50 sea trials. (Ramp 

et al. 2009)  Other implementations include FRONT-3 from March to June 2001, Seaweb 

2001, FRONT-4 from January to June 2002, Seaweb 2002, Seaweb 2005 UUV 

experiments in July 2005 in Monterey Bay and December 2005 in St Andrews Bay, 

Seaweb 2005, Seaweb 2008, Unet 2006, 2007, 2008, NGAS 2008, 2009, 2010, 2011, 

2012, and MISSION 2012 in Singapore Strait. 

D. DEEP SEAWEB 

Seaweb operations can be extended to the deep ocean by exploiting the 

characteristics of the deep ocean, specifically the Deep Sound Channel (DSC) and 
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reliable acoustic path (RAP) phenomena.  These concepts are explored in detail in Scott 

Thompson’s thesis, “Sound Propogation Considerations for a Deep Ocean Acoustic 

Network” in December 2009 and are summarized here. 

1. Reliable Acoustic Path 

Of the several paths available, frequently one will be more dominant due to 

minimum transmission losses (Urick 1983).  An example of these dominant paths is 

known as reliable acoustic path (RAP).  This phenomenon is exploited by using the direct 

path between deep source and shallow receiver, or vice versa.  These moderate ranges are 

achieved because the sound travels over specific paths that are not sensitive to near-

surface effects or losses from reflection as in “bottom-bounce” propagation.  Example 

RAPs are shown in Figure 17 (Urick 1983). 

 

Figure 17.   Reliable acoustic paths from a deep source to shallow receivers 

(From Urick 1983). 
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2. Deep Sound Channel 

This phenomenon is the result of the sound-speed profile of the deep ocean.  

Sound speed is minimum at a specific depth depending largely on the latitude.  

Refraction focuses the sound waves in the ocean according to Snell’s Law, bending them 

toward the depth of the minimum velocity.  When an acoustic source is located at or near 

the depth of minimum velocity, the sound waves are trapped in the deep sound channel 

(DSC) and propagate to great distances.  The axis of the DSC is the depth at which the 

minimum velocity occurs (Urick 1983). 

Following World War II, Ewing and Worzel explored the characteristics of the 

DSC.  The DSC was utilized in the SOFAR (sound fixing and ranging) system to rescue 

aviators that went down at sea.  The aviator could drop a small explosive charge and the 

acoustic signal could be received thousands of miles away.  Using receipts at two or more 

stations provided a cross-fix of the location of detonation.  Ewing and Worzel published a 

ray diagram like that in Figure 18 that was originally drawn by hand for a sound source at 

4,000 ft that clearly indicates a zone at 32 1/2 miles where the sound waves from several 

propagation paths converge to produce a convergence zone.  These ray traces are now 

computer created as shown in Figure 19 (Urick 1983). 

Because the path that each sound wave travels can vary so much, there is 

significant distortion of acoustic signals transmitted in the DSC.  As an example, an 

experiment in 1963 using 4-pound explosive sources dropped from an aircraft and 

detonated at the DSC axis in Bermuda demonstrated how much distortion can be 

introduced by sound traveling along the DSC.  Even though the explosive pulse was 

initially very short, the received acoustic signal 1,000 miles away was spread to 9.4 

seconds. (Urick 1983)  Several modulation techniques can handle the multipath 

propagation: frequency hopping, multi-channel M-ary frequency-shift keyed (MFSK), 

and M-ary phase-shift-keyed (MPSK) to name a few (Kilfoyle and Baggeroer Jan 2000). 
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Figure 18.  Ray diagram of transmission in the deep sound channel (DSC) 

for a source on the axis (From Urick 1983). 
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Figure 19.  Computer generated ray diagram of the DSC for a source near the axis. 

  Reflected rays are omitted (From Urick 1983). 

Another advantage of utilizing the DSC is its nearly global availability as shown 

in Figure 20, a worldwide map showing DSC axis depths.  The DSC axis is around 1000 

meters deep (3,280 feet) in the midlatitudes but can be very near the surface near polar 

regions (Munk and Forbes 1989). 

 

Figure 20.  Worldwide DSC axis depths in meters (From Munk and Forbes 1989). 
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3. Deep Seaweb Concept 

The Deep Seaweb concept is similar to that of Seaweb but it exploits the DSC as 

shown in Figure 21 to provide longer links and greater area coverage. 

 

Figure 21.  Deep Seaweb concept illustration (From Rice 

unpublished Deep Seaweb presentation). 

The DSC is deep enough to avoid being a hazard to navigation.  The DSC can 

also provide fairly stealthy channels of communication between submerged, surface, and 

air assets.  It is possible for submarines to participate in the communication network with 

messaging over long distances and connections to command centers via a gateway node 

at a more secure or more remote location. 

The gateway node could be an unmanned surface vehicle (USV), a moored 

surface or subsurface buoy that is linked to an airborne asset via lasers or radio 

frequency, a cabled seafloor modem, or a manned surface vessel.  Paul Blodgett analyzed 

the use of lasers to communicate with submarines in his thesis, “Submarine Laser 

Communication Options and the Impact of Light Refraction at the Air-Sea Interface” in 

September 2009.  Lasers could be used to communicate with a subsurface gateway node 
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in a distributed undersea Seaweb infrastructure instead of linking directly with the 

submarine. 

There are several factors that need to be considered when exploring the use of a 

moored gateway buoy.  One important factor is the effect of ocean currents on the long 

tether that anchors the acoustic modem and transducer to the sea floor.  Scott Thompson 

explored this aspect in detail in his thesis “Displacement of tethered hydro-acoustic 

modems by uniform horizontal currents” in December 2009. 

Another important factor to consider is longevity since these buoys are battery 

powered.  There are several options that could increase the operational time buoys and 

acoustic modems are able to remain in service.  There have been great advances in 

developing regimens to conserve battery power by utilizing low power states and more 

efficient electronic components that have greatly increased the service life.  To 

compliment these advances, there are several options that could be used to recharge the 

batteries on station rather than replace them, which would be very expensive in time and 

resources for modems and buoys deployed in the deep ocean.  One option is to utilize a 

microbial fuel cell.  On April 22, 2010, for an Earth Day event at the Pentagon, the Office 

of Naval Research (ONR) showcased such a microbial fuel cell that converts “naturally 

occurring fuels and oxidants in the marine environment into electricity, offering a clean, 

efficient and reliable alternative to batteries and other environmentally harmful fuels” 

(Office of Naval Research 2010). ONR Program Manager Dr. Linda Chrisey made the 

following observations:  

Think of it as a battery that runs on mud. They are sustainable, 

environmentally friendly and don't involve hazardous reactants like a 

regular battery might because they use the natural carbon in the marine 

environment. For example, we are working on a 4-foot long autonomous 

underwater vehicle that will settle on the seafloor and recharge its batteries 

using this fuel cell approach. We are already able to power many types of 

sensors using microbial fuel cells. (Office of Naval Research 2010) 

Another option is to have a solar panel with a buoyancy controlled feature that 

would allow periodic recharging.  It is also possible to harness the energy available in the 

ocean currents to run a small generator for recharging.  While each of these options has 
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its advantages, the microbial fuel cell seems to be very promising and it was named as 

one of TIME magazine’s “Top 50 Inventions for 2009” (Office of Naval Research 2010). 

The standard Deep Seaweb acoustic modems are the same as those used for 

Seaweb, commercially available Teledyne Benthos acoustic modems that operate in the 

9-14 kHz band.  Although the ocean floor depth is around 8,000 meters (26,246 feet) in 

some places, 4,000 meters (13,123 feet) is a typical ocean depth as shown in Figure 22 

(Amante and Eakins 2009).  Using a typical DSC axis depth of 1,000 meters (3,280 feet), 

the cable that anchors the transducer and acoustic modem will be approximately 3,000 

meter (9,842 feet) long.  The acoustic modem setup that Thompson analyzed in detail in 

both theses is shown in Figure 23. 

 

Figure 22.  Worldwide ocean depths in meters (From Amante and Eakins 2009). 
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Figure 23.  Acoustic modem composition used for Thompson’s DSC analysis 

(From Thompson 2010). 
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III. NETWORK MODEL FORMULATION 

A. DESIGNING A RESILIENT NETWORK 

1. Network Setup 

The wireless Seaweb underwater network can be set up in any geometric 

arrangement, as indicated in the various applications mentioned in chapter II.  In order to 

create a finite representation that can be optimized, we decided to use a small square area 

measuring 75 km x 75 km (40.5 nm x 40.5 nm) in a generic patch of ocean that has a 

typical sound velocity profile.  We divide the area into a 5km x 5km (2.7nm x 2.7nm) 

grid, placing an acoustic modem only at a node, defined as the center of one of the 225 

square patches defined by the grid.  Each grid square diagonal is 7.07 km (3.8 nm).  The 

number of gateway nodes and access point nodes in any scenario is fixed and each is 

placed at a predetermined location.  A fixed number of repeater nodes are available for 

placement at other, unoccupied nodes.  Each acoustic modem has a maximum effective 

range of about 25 km, (13.5 nm); if two modems are placed within range of each other a 

connection can be established between them, and we represent this possibility as an arc 

between two nodes whose Euclidean distance is less than or equal to the maximum 

effective range. 

We also assume that each node in the network is a potential attack location, at 

which an adversary can detonate ordnance (e.g., a depth charge).  We assume that the 

detonation corresponding to such an attack will damage nearby modems and render them 

unusable.  Any damage radius can be used; for the purposes of our study, we assume that 

an attack at any node disables modems placed at any of the eight adjacent (orthogonally 

and diagonally) nodes. 

The goal of our model is to determine locations for repeaters so that each access 

point is connected to at least one gateway node through a sequence of modems within 

range of each other.  We do this by establishing a unit of communications traffic at each 

access point, and having the model place repeaters at nodes to minimize the number of 

undeliverable units of traffic, where traffic will be routed along arcs that connect nodes 

occupied by repeaters. 
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This network design must consider a set of possible attacks by a rational, 

malicious adversary, the attacker, who chooses a set of nodes to attack and whose goal is 

the exact opposite of that of the network designer, who we call the defender: to maximize 

the costs (including penalties) of delivering messages from each of the access points to 

any gateway node.  We define the set of feasible attacks for the attacker through a simple 

budget constraint limiting the number of nodes he can attack.  However, this can be 

generalized to any set of constraints we wish to place on the attacker’s operations, based 

on our estimation of his capability to launch simultaneous attacks against our network. 

We present the following monolithic tri-level optimization problem, which we 

refer to as a defender-attacker-defender (DAD) model, for optimizing the design of a 

communications network that is resilient to attack.  Although such problems cannot be 

solved directly, we develop a decomposition algorithm and several related problem 

formulations that we use to determine optimal solutions to this problem. 

2. Sets and Indices 

iN   potential sites for relays (alias j) or attacks (alias i’, j’) or source 

nodes (alias k) 

i, j A  potential communication arcs; pairs of sites that are within range of 

each other {alias (j,i)} 

S N   access points (source nodes) for messages 

\T N S  gateway (exit) nodes for the network 

iV N    set of nodes that affect node i when attacked 

3. Data 

q  penalty for each undelivered packet 

p  penalty on each packet sent across an attacked arc 

max_repeaters  maximum number of repeaters to emplace (including access 

points and gateways) 
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max_attacks maximum number of attacks  

4. Variables [type] 

Ek undelivered messages remaining at any source node k [nonnegative] 

Xi’ 1 if node i’ is attacked. [binary] 

Yij
k

 messages originating from source node k sent across (i,j)  [nonnegative] 

Fi
k
 messages from a source node k undelivered to any gateway node t 

[nonnegative] 

Ri 1 if modem emplaced at node i, includes access points, gateway nodes, 

and relay nodes [binary] 

5. Formulation SUBNET_DAD: 
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6. Discussion 

The objective function (T1) assesses a penalty of q units per undelivered message 

from each source node and calculates the total number of hops taken by the delivered 

messages to get to their destination; it also includes a penalty of p units for each attacked 
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arc traversed by a message.  Constraints (T2) maintain balance of flow at each node i for 

each individual message tagged by its source node, k.  There is one constraint (T3) for 

every pair of k and Ri that requires a repeater be placed at the (non-source, non-gateway) 

tail node of any arc that transmits messages; in practice the R variables are fixed for 

source and gateway nodes, so the corresponding control constraints are not required in 

any of the formulations.  Constraints (T4) and (T5) place a ceiling on the total number of 

repeater nodes and max number of attacks, respectively.  Constraint (T6) establishes each 

individual message flow as a nonnegative variable.  Constraints (T7) and (T8) establish 

each Xi’ and Ri as a binary variable. 

For an actual laydown in a known geographic area, nodes can be located 

anywhere in that area and a sound propagation model can be run for each pair of nodes to 

determine connectivity: if modems placed at two nodes could establish a viable 

communications channel, then the arc between these two points is added to the set A.  In 

our simple grid example, the set A of potential communication arcs is calculated using a 

constant, sidelen, that determines the distance between adjacent cells, in nm, and a 

constant, maxdist, that gives the maximum range in nm between repeaters that 

communicate with each other.  The propagation model provides the basis for that 

maximum range. 

In a scenario with multiple gateway nodes, we connect each gateway node to one 

“central gateway node” with zero cost, invulnerable arcs (i.e., for such an arc (i,j), both Vi 

and Vj are empty) so even though the actual gateway nodes will be modeled t T N  , 

the code incorporates the “central gateway node” as t N .  This allows a message 

originating at an access node to exit the system at any one of the gateway nodes. 

B. SOLVING SUBNET_DAD WITH DECOMPOSITION 

In order to solve SUBNET_DAD, we propose a decomposition algorithm in 

which the subproblem solves for the optimal attack against any fixed network design, and 

the master problem builds a design that is resilient to each attack seen so far.  We first 

formulate the attacker subproblem, which is simply SUBNET_DAD with the design 

variables, R, fixed, and is therefore a two-level optimization problem we refer to as an 



 39 

attacker-defender (AD) model.  In this model, we define a fixed design through a new set 

of parameters representing a fixed design, use those parameters in place of the R 

variables, modify the objective (T1) and constraints (T3), and drop constraints (T4) and 

(T8): 

1. New Data 

iR  1 if modem emplaced at node i, 0 otherwise (a fixed design) [binary] 

2. Formulation SUBNET_AD: 
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3. Discussion 

This formulation still cannot be solved directly, but a simple, standard 

reformulation converts it to an integer programming problem.  For fixed values of both 

the R and X variables, the resulting optimization problem is an amalgamation of several 

minimum-cost network flow problems, one per source node, that models the routing (or 

non-routing, as appropriate) of each message through the existing, attacked network.  In 

this case constraints (T2), (T3’), and (T6) define the feasible region for the operator’s 

flow problem.  For a fixed design, , and a fixed attack plan, , the network operator 

faces the following message routing problem: 

R X



 40 

4. New Data 

'iX  1 if node i’ attacked, 0 otherwise (a fixed attack plan) [binary] 

5. Formulation SUBNET_ROUTING: 
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6. Discussion 

This is a linear programming problem, and we have indicated dual variable names 

for each constraint.  The objective (T1’’) is now a pure minimization in the flow and 

artificial variables.  We have dropped constraints (T5) and (T7), as the attack is fixed, and 

the rest of the model is the same as before. 

We are now in a position to take the dual of this routing formulation, and then 

replace the attack parameters with decision variables to yield a pure maximization integer 

programming problem: 
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7. Formulation SUBNET_AD_DUALILP: 
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8. Discussion 

The DAD objective function takes the input from the objective function for the 

Operator Model then provides input to the solution to cut d of the DAD Model (D1) 

provides optimum solution of the DAD Model.  Constraint (D2) maintains balance of 

flow at each node, where each access point, s, has one unit of supply, and must connect to 

at least one gateway node, t.  Constraints (D3) and (D4) require that repeaters be placed 

at both endpoints of any arc that is used for communication.  Constraint (D5) places a 

ceiling on maximum number of attacks.  Constraints (D6) establish each Xi’ as a binary 

variable.  Constraints (D7) establish each ik  as a nonnegative variable. 

For any fixed design, this model can be solved with commercial, off-the-shelf 

optimization software such as GAMS (General Algebraic Modeling System) (GAMS, 

2013) and CPLEX Optimizer (IBM, 2013).  SUBNET_AD_DUALILP serves as the 

subproblem for our decomposition algorithm, and with it in place, we now provide the 

master problem formulation. 

C. MASTER PROBLEM FORMULATION 

Our master problem includes design decision variables, R, from the original 

formulation, and keeps track of the attack found by the subproblem at each iteration, d.  
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For each of these attacks, it maintains a separate set of flow and artificial variables, 

indexed by the iteration, so that it can determine the optimal routing response to each 

attack.  It is a network design problem in which the design chosen is evaluated against 

each of a finite set of attacks, and therefore determines the design that is resilient to the 

worst-case attack out of all the attacks it has seen so far. 

1. Sets and Indices 

d  iteration index for DAD model 

2. Data 

X i '
d
  1 if node i’ attacked in iteration d, 0 otherwise 

D  number of iterations 

3. Variables [type] 

DADZ  DAD master problem objective function value [free] 

EDk
d

 undelivered messages remaining at any access point node s in 

response to attack from iteration d [nonnegative] 

YD ij

kd
 messages sent across (i,j) in response to attack from iteration d 

[nonnegative] 

FDi
d

 messages undelivered to any gateway node i in response to attack 

from iteration d [nonnegative] 
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4. Model Formulation 
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5. Discussion 

The DAD master problem objective (M0) represents the operating cost resulting 

from the worst-case attack.  Each cut constraint (M1) provides a lower bound on the 

worst-case cost based on a particular attack plan, 
d

X , and the associated flows YD
kd

 

representing the operator’s optimal re-routing of that message in response to that attack 

plan.  Constraints (M2) enforce balance of flow for each node and each message, for each 

attack plan.  Constraints (M3) require a repeater node be established at the tail node of 

any arc that carries flow, for each attack plan.  Constraint (M4) limits the total number of 

repeaters used in the network design.  Constraints (M6) establish each 
kd

ijYD  as a 

nonnegative variable.  Constraints (M8) establish each Ri as a binary variable. 

When solving SUBNET_DAD using Benders decomposition, we can encounter a 

repeated attack from the subproblem (since the subproblem itself is an integer linear 

program, the optimal attack in response to a given suboptimal defense might be one 

we’ve seen before), which immediately leads to cycling and a failure to converge.  To 

prevent this, we create a version of the SUBNET_DUALILP subproblem with an 

additional set of constraints: 
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These constraints use the iteration index, d, defined in the master problem, and, 

when solving the subproblem at iteration D, they make use of the stored attack plans 
d

iX  

from the previous iterations, 1 d D  .  The constraints (D8) require that the current 

attack not target at least one node that was targeted in each of the prior attacks.  We refer 

to this version as SUBNET_DUALILP_UNIQUE. 

D. ALGORITHM 

Using the models just described, the following algorithm solves for the optimal 

placement of repeaters at nodes, and, as a by-product, an optimal attack for that specific 

network configuration. 

1. Variables used in the algorithm not previously defined [type] 

  incumbent defense 

R   current defense to use in the AD subproblem 

  attack corresponding to the incumbent defense 

ub_DAD upper bound for DAD model [nonnegative] 

lb_DAD lower bound for DAD model [nonnegative] 

epsilon_DAD relative tolerance for the DAD model [nonnegative] 

2. Algorithm SUBNET_DECOMP 

Solve SUBNET_DESIGN for R, Y, E, F, ZDAD 

lb_DAD = ZDAD 

ub_DAD = +  

R R , bestR R ,
bestX  0  

D =1 

While ub_DAD – lb_DAD > epsilon_DAD*lb_DAD 

 Solve SUBNET_DUALILP for X, ,  , ZAD 

Ri
best

X i '
best
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 If ub_DAD > ZAD 

  Update ub_DAD = ZAD 

  Update incumbent defense, bestR R  

  Record attack corresponding to incumbent defense, '

best

iX  

 If not first iteration (i.e., D >1) 

  Compare X to each , 1dX d D   

  If dX X  for some d  

   Solve SUBNET_DUALILP_UNIQUE for X, ,  , ZAD 

 Record next (unique) attack: DX X  

Solve SUBNET_DAD_MASTER for R, YD, ED, FD, ZDAD  

 If  lb_DAD < ZDAD 

  Update lb_DAD = ZDAD 

 Update current design R R  

 D = D + 1 

Solve SUBNET_ROUTING (with ,best bestR R X X  ) to recover Y, E, F 

3. Discussion 

Algorithm SUBNET_DECOMP uses the standard structure of Benders 

decomposition with a modified subproblem (here, SUBNET_DUALILP_UNIQUE) that 

guarantees a unique, if suboptimal, attack plan, given a list of prior attack plans 

previously enumerated.  Although this modified subproblem does not generate valid 

bounds (and therefore cannot be used to update the incumbent), it does guarantee that 

every possible attack plan that uses all available attacks will eventually be enumerated.  If 

the subproblem becomes infeasible due to these constraints, then we must have 

enumerated all possible attacks and therefore the incumbent solution is optimal.  Each 

suboptimal attack generates a valid cut for the master problem, and will eventually 

provide enough guidance (possibly through an exhaustive enumeration of all possible 

cuts) to converge. 
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IV. RESULTS, CONCLUSIONS, AND FUTURE WORK 

A. RESULTS 

This analysis is based on the small 15 by 15 node network with the access point 

nodes, s, and the gateway nodes, t, in predetermined locations as mentioned in chapter 

III.  The location of the repeater nodes, r, are determined by initially solving the network 

design problem.  This network is indexed by row and column and numbered from left to 

right and top to bottom.  To further examine the effect of access point and gateway node 

placement, four configurations, A through D, were used.  The location of each node will 

be referenced by row and column in this format (row, column).  For instance, a node in 

row 5, column 10 will be written as (5, 10). 

For this 15 by 15 network, the numerical values used in the GAMS code are 

summarized in Table 1. 

Table 1.   Numerical values for data used in the GAMS code. 

Data Term  Definition 
Value for this 15 by 15 

network 

q penalty for each undelivered packet 12 

p 
penalty on each packet sent across an 

attacked arc 
13 

max_repeaters 
maximum number of repeaters to emplace 

(including access points and gateways) 
up to 30 

max_attacks maximum number of attacks varied from 2 to 9 

epsilon_DAD relative tolerance for the DAD model varied from 0.15 to 2 

Recall that each attack has an area effect which disables the attacked node and all 

adjacent nodes.  Introducing the possibility of two attacks will show some common 

effects regardless of the placement of access point and gateway nodes.  Further analysis 

is done on each configuration to determine the number of attacks required to completely 
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block all flow in the network.  The value of epsilon_DAD was varied in order for the 

model to converge on a solution for some of the configurations. 

The optimal placement of repeater nodes with and without two attacks for each 

configuration is shown in Figures 24 through 42, where the nodes are labeled according 

to Table 2.  The various configurations of access point nodes and gateway nodes are 

summarized in Tables 3 through 6. 

Table 2.   Labeling key for the network configurations in Figures 24 through 42. 

S access point node 

T gateway node 

R repeater node 

X attacked node 

R X attacked repeater node 

 node disabled from the area effect of an adjacent attacked node 

1. Configuration A 

Table 3.   Configuration A for placement of s and t nodes. 

Node Type Site Row Column 

s n016 2 1 

s n113 8 8 

s n211 15 1 

t n015 1 15 

t n225 15 15 

The initial solution to the network routing problem with 5 repeater nodes and 

without any attacks for configuration A is shown in Figure 24. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1               T 

2 S     R     R     

3                

4                

5                

6                

7                

8        S        

9                

10                

11                

12           R     

13                

14                

15 S     R    R     T 

Figure 24.  Optimal node placement without any attacks for configuration A (with 5 

repeater nodes). 

With two attacks, the attacker can completely isolate the t node in (1, 15).  The 

repeater nodes in (5, 12) and (11, 12) are disabled but the flow that would go through 

these nodes is redirected and all s nodes are still connected to at least one t node.  Figure 

25 illustrates the resulting network configuration with 6 repeater nodes. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1               T 

2 S               

3                

4           X     

5            R    

6    R            

7                

8        S        

9                

10           X     

11    R        R    

12                

13                

14                

15 S     R     R    T 

Figure 25.  Optimal node placement with two attacks for configuration A (with 6 repeater 

nodes and no s nodes blocked). 

With four attacks, the attacker can completely isolate the t node in (1, 15) and 

block all flow from the s node in (2, 1).  Even though there are multiple disabled repeater 

nodes, the flow from the s nodes in (15, 1) and (8, 8) is rerouted to the t node in (15, 15).  

If the repeater at (6, 4) had been placed at (7, 3) then if all else remained the same, the s 

node at (2, 1) would have a link to the t node in (15, 15).  However, if the repeater node 

had been placed at (7, 3) instead of (6, 4), the algorithm would have placed the attacks 

differently and evaluated the resulting solution to be less optimal than the final solution.  

Figure 26 illustrates the resulting network configuration with 25 repeater nodes and one s 

node blocked. 

  



 51 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1    R    R       T 

2 S     R      X R   

3   R    R    R R R   

4             X   

5     R    R   R    

6    R            

7                

8        S        

9                

10                

11   R    R R X  X R R   

12     R 

 

    R R     

13                

14   R           R  

15 S     R     R    T 

Figure 26.  Optimal node placement with four attacks for configuration A (with 25 

repeater nodes and one s node blocked). 

With six attacks, the attacker can completely isolate the t node in (15, 15) and 

block all flow from the s nodes in (2, 1) and (15, 1).  Despite multiple disabled repeater 

nodes, the flow from the s nodes in (8, 8) is rerouted to the t node in (1, 15).  One of the 

attacks is on the repeater node in (4, 11).  Figure 27 illustrates the resulting network 

configuration A with 25 repeater nodes and two s nodes blocked. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1       R     R   T 

2 S               

3        R     R   

4   X        R/X     

5    R     R R    R  

6                

7                

8        S    R    

9                

10             X   

11    R     R   R  R  

12     X R    X R    R 

13  R   R      R     

14       X         

15 S     R  R  R R  R  T 

Figure 27.  Optimal node placement with six attacks for configuration A (with 25 repeater 

nodes and two s nodes blocked). 

With seven attacks, the attacker can completely isolate both t nodes and block all 

flow from all s nodes.  One of the attacks is on the repeater node in (12, 11).  Figure 28 

illustrates the resulting network configuration with 5 repeater nodes and all flow blocked 

in the network.  Although it may appear that the addition of only a few nodes near the t 

node at (15, 15) could provide conductivity in the network, the full story comes in the 

effect of increasing the maximum number of attacks from 6 in Figure 27 to 7 in Figure 

28.  The addition of one more attack blocks the only remaining flow in the network from 

the s node at (8, 8) ensuring that there is no solution that provides connectivity even if all 

25 repeater nodes were used.  This is reflected when the algorithm places minimum 

repeater nodes and groups the attacks.  The only way to provide flow in the network is to 

increase the number of repeater nodes available.  When there are sufficient attacks to 
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block all flow in the network, the algorithm provides similar solutions for configurations 

B, C, and D. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1     X          T 

2 S     R     R     

3                

4                

5                

6                

7                

8        S        

9                

10                

11          X X X    

12          X R/X     

13                

14     X           

15 S     R    R     T 

Figure 28.  Optimal node placement with seven attacks for configuration A (with 5 

repeater nodes and all flow blocked in the network). 

2. Configuration B 

Table 4.   Configuration B for placement of s and t nodes. 

Node Type Site Row Column 

s n015 1 15 

s n113 8 8 

s n211 15 1 

t n001 1 1 

t n225 15 15 
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The initial solution to the network routing problem without any attacks for 

configuration B is shown in Figure 29 with 7 repeater nodes. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 T              S 

2                

3           R     

4                

5     R           

6 R              R 

7                

8        S        

9                

10 R               

11               R 

12           R     

13                

14                

15 S              T 

Figure 29.  Optimal node placement without any attacks for configuration B (with 7 

repeater nodes). 

With two attacks, the attacker can completely isolate the t node in (1, 15).  The 

repeater nodes in (4, 5), (5, 4), and (11, 12) are disabled.  The flow from the s nodes in (1, 

15) and (8, 8) are redirected so all s nodes are still connected to at least one t node.  

Figure 30 illustrates the resulting network configuration with 13 repeater nodes and no s 

nodes blocked when there were 15 repeater nodes available.  Since all s nodes are 

connected, the additional 2 repeater nodes are not necessary to provide flow in the 

network. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 T     R    R     S 

2                

3                

4    X R           

5    R        R   R 

6 R               

7                

8        S        

9                

10           X    R 

11 R           R    

12     R           

13                

14                

15 S     R    R     T 

Figure 30.  Optimal node placement with two attacks for configuration B (with 13 

repeater nodes and no s nodes blocked). 

With four attacks, the attacker is able to completely isolate the t node in (15, 15) 

and block all flow from s node in (1, 15).  Even though there are multiple disabled 

repeater nodes, the flow from s nodes in (8, 8) and (1, 15) is rerouted so that they are still 

connected to one t node.  Figure 31 illustrates the resulting network configuration with 13 

repeater nodes and no s nodes blocked when there were 15 repeater nodes available.  

Since all s nodes are connected, the additional 2 repeater nodes are not necessary to 

provide flow in the network. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 T    X R     R    S 

2                

3                

4     R      R     

5    R          X R 

6                

7                

8        S        

9           R     

10   X            R 

11                

12           R     

13                

14          X      

15 S     R     R    T 

Figure 31.  Optimal node placement with four attacks for configuration B (with 13 

repeater nodes and no s nodes blocked). 

With six attacks, the attacker is able to completely isolate the t node in (1, 1) and 

block all flow from the s nodes in (1, 15) and (8, 8).  Even though there are multiple 

disabled repeater nodes, the flow from the s node in (1, 15) is rerouted so that it is still 

connected to one t node.  One of the attacks is on the repeater node in (6, 1).  Figure 32 

illustrates the resulting network configuration with 21 repeater nodes and two s nodes 

blocked.  Here since the s nodes at (15, 1) and (8, 8) are completely blocked, flow in the 

network would not improve even if all 25 repeater nodes were used. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 T     R    R     S 

2                

3                

4   X        X     

5    R        R   R 

6 R/X               

7                

8        S   X     

9            R    

10    R           R 

11 R        R   R/X    

12        R R  R  R   

13     R         R  

14         X       

15 S    R     R     T 

Figure 32.  Optimal node placement with six attacks for configuration B (with 21 repeater 

nodes and two s nodes blocked). 

With seven attacks, the attacker can completely isolate both t nodes and block all 

flow from all s nodes. Figure 33 illustrates the resulting network configuration with 7 

repeater nodes and all flow blocked the network even though up to 25 repeater nodes 

were available.  This is the same result and discussion as in configuration A for Figures 

27 and 28 where all flow in the network is blocked. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 T              S 

2                

3           R     

4    X            

5     R           

6 R              R 

7                

8        S        

9 X               

10 R             X  

11          X X X   R 

12          X R     

13                

14                

15 S              T 

Figure 33.  Optimal node placement with seven attacks for configuration B (with 7 

repeater nodes and all flow blocked the network). 

3. Configuration C 

Table 5.   Configuration C for placement of s and t nodes. 

Node Type Site Row Column 

s n008 1 8 

s n113 8 8 

s n218 15 8 

t n106 8 1 

t n120 8 15 
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The initial solution to the network routing problem without any attacks for 

configuration C is shown in Figure 34 with two repeater nodes. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S        

2                

3                

4                

5           R     

6                

7                

8 T       S       T 

9                

10                

11           R     

12                

13                

14                

15        S        

Figure 34.  Optimal node placement without any attacks for configuration C (with 2 

repeater nodes). 

With two attacks, the attacker can only disable the two repeater nodes in (5, 5) 

and (5, 11).  The flow from the s nodes in (1, 8) and (8, 8) are redirected so all s nodes are 

still connected to at least one t node.  Figure 35 illustrates the resulting network 

configuration with 7 repeater nodes and no s nodes blocked. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S        

2                

3                

4    X      X      

5     R   R   R     

6                

7                

8 T       S       T 

9     R           

10                

11           R     

12    R   R         

13                

14                

15        S        

Figure 35.  Optimal node placement with two attacks for configuration C (with 7 repeater 

nodes and no s nodes blocked). 

With four attacks, the attacker can only disable five of the repeater nodes.  The 

flow from the s nodes in (8, 1) and (8, 8) are redirected and the flow from the s node in 

(15, 8) goes through a different repeater node so all of the S nodes are still connected to 

at least one t node.  Figure 36 illustrates the resulting network configuration with 8 

repeater nodes and no s nodes blocked when there were 25 repeater nodes available.  

Since all s nodes are connected, the additional 17 repeater nodes are not necessary to 

provide flow in the network. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S        

2                

3                

4     X R    X      

5     R   R   R     

6                

7    X            

8 T    R   S       T 

9                

10    X            

11     R   R        

12            R    

13                

14                

15        S        

Figure 36.  Optimal node placement with four attacks for configuration C (with 8 repeater 

nodes and no s nodes blocked). 

With six attacks, the attacker can only disable nine of the repeater nodes and the 

resulting network flow maintains all of the s nodes connected to at least one t node.  

Figure 37 illustrates the resulting network configuration with 14 repeater nodes and no s 

nodes blocked when there are 25 repeater nodes available.  Since all s nodes are 

connected, the additional 11 repeater nodes are not necessary to provide flow in the 

network. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S        

2     R           

3                

4    X      X      

5     R      R     

6  R      R        

7            X    

8 T   X R   S    R R  T 

9     R           

10                

11   X     R   R/X     

12    R        R    

13                

14             R   

15        S        

Figure 37.  Optimal node placement with six attacks for configuration C (with 14 repeater 

nodes and no s nodes blocked). 

With eight attacks, the attacker is able to block all flow from the s nodes in (1, 8) 

and (8, 8) and isolate the t node in (8, 1).  The flow from the s node in (15, 8) is 

redirected so it is still connected to at least one t node.  Two of the attacks are on the 

repeater nodes in (8, 10) and (11, 11).  Figure 38 illustrates the resulting network 

configuration with 15 repeater nodes and one s node blocked when there are 25 repeater 

nodes available.  Even if the other 10 repeater nodes were used, the algorithm evaluated 

the resulting solution would be suboptimal when compared to the final solution. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S   X R    

2                

3           X    R 

4   X         R    

5   R R    R        

6                

7    X        X    

8 T    R   S  R/X   R  T 

9                

10                

11     R      R/X     

12    R X       R    

13               R 

14            R    

15        S        

Figure 38.  Optimal node placement with eight attacks for configuration C (with 15 

repeater nodes and one s node blocked). 

With nine attacks, the attacker is able to completely isolate all flow from all t 

nodes and block all flow from all the s nodes.  One of the attacks is on the repeater node 

in (5, 11).  Figure 39 illustrates the resulting network configuration with only 2 repeater 

nodes and all flow blocked in the network when there are 25 repeater nodes available.  

This is the same result and discussion as in configuration A for Figures 27 and 28 where 

all flow in the network is blocked. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1        S        

2                

3                

4          X X X    

5          X R/X     

6                

7                

8 T       S       T 

9                

10          X X X    

11          X R     

12                

13                

14                

15        S        

Figure 39.  Optimal node placement with nine attacks for configuration C (with 2 repeater 

nodes and all flow blocked in the network). 

4. Configuration D 

Table 6.   Configuration D for placement of s and t nodes. 

Node Type Site Row Column 

s n211 15 1 

s n218 15 8 

s n225 15 15 

t n004 1 4 

t n012 1 12 
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The initial solution to the network routing problem without any attacks for 

configuration D is shown in Figure 40 with 7 repeater nodes. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1    T        T    

2                

3                

4                

5    R           R 

6    R            

7                

8       R         

9                

10               R 

11    R            

12     R           

13                

14                

15 S       S       S 

Figure 40.  Optimal node placement without any attacks for configuration D (with 7 

repeater nodes). 

With two attacks, the attacker isolates the t node in (1, 12).  The flow from the s 

nodes in (15, 1) and (15, 8) are redirected so all s nodes are still connected to at least one 

t node.  Figure 41 illustrates the resulting network configuration with 20 repeater nodes 

and no s nodes blocked when there were 25 repeater nodes available.  Since all s nodes 

are connected, the additional 5 repeater nodes are not necessary to provide flow in the 

network. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1    T        T    

2                

3                

4                

5     X R  R   X    R 

6    R        R    

7                

8                

9 R       R        

10 R    R   R R      R 

11    R            

12    R       R     

13         R    R   

14                

15 S    R R  S  R     S 

Figure 41.  Optimal node placement with two attacks for configuration D (with 20 

repeater nodes and no s nodes blocked). 

With four attacks, the attacker is able to completely isolate all s nodes.  Figure 42 

illustrates the resulting network configuration with 7 repeater nodes and all flow blocked 

in the network even though up to 25 repeater nodes were available.  This is the same 

result and discussion as in configuration A for Figures 27 and 28 where all flow in the 

network is blocked. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1    T        T    

2                

3                

4              X  

5    R           R 

6    R            

7   X X  X          

8       R         

9                

10               R 

11    R            

12     R           

13                

14                

15 S       S       S 

Figure 42.  Optimal node placement with four attacks for configuration D (with 7 repeater 

nodes and all flow blocked in the network). 

B. CONCLUSIONS 

While the flow of none of the network configurations are completely blocked by 

two attacks, by comparing the resulting node placements it is possible to draw some 

general conclusions.  Configurations A and D are more affected by attacks than 

configurations B and C.  The t nodes in configurations A and D are on the same 

geometric side whereas the t nodes for configurations B and C are on opposite sides of 

the network coverage area.  The arrangement for A and D force the flow to only one of 

the two t nodes with more units of flow across fewer arcs, making it more vulnerable to 

further attacks and potentially slowing down the flow of information through the 

network. 
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Other conclusions can be drawn from the comparison of the various network 

configurations when all flow is completely blocked by attacks.  The three network 

configurations A, B, and C that have at least one of the access point nodes, s, in the 

middle of the geographic area are much more resilient than network configuration D 

which has all the s nodes on the same side of the area.  Also, network configuration C is 

the one with the most (nearly identical) options with all the s nodes evenly spaced 

between two parallel sides, is the most resilient network configuration.  The number of 

attacks required to completely block all flow in the network is summarized in Table 7. 

Table 7.   Number of attacks required to completely block the flow in the network. 

Network Configuration Number of Attacks 

A 7 

B 7 

C 9 

D 4 

Overall, this analysis demonstrates two important factors that determine the 

resiliency of a network against attack or disruption.  A network’s resilience is related to: 

1) the number of possible sources or destinations that are available in that network, and 2) 

the separation of those sources or destinations.  The algorithm developed in this thesis 

could be crucial in designing an underwater network that is constrained by geography or 

other environmental factors. 

C. FUTURE WORK 

There are several possibilities to further this research in optimizing networks.  

Currently the gams code can only be used on relatively small networks such as the 15 by 

15 network used as a basis for the analysis in this thesis with few s and t nodes.  This 

limitation prevents applying it to many practical applications such as public underwater 

acoustic communications networks, transportation networks, product distribution 

networks, airline schedules, and communication networks.  The code could be modified 
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to allow the user to enter a starting solution, simplifying the complexity of the 

calculations and speeding up the execution time of the algorithm.  

This work could be carried forward and improved by modifying the gams code to 

make the penalty terms distance related instead of being tied to the number of nodes 

travelled from source to destination.  This would also make the code easily adapted to 

larger networks regardless of node spacing or total number of nodes. 
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APPENDIX A.  ALGORITHM IMPLEMENTED IN GAMS CODE 

FOR NETWORK CONFIGURATION A WITH TWO ATTACKS 

$TITLE SUBNET - Robust design of a submarine communications network using 

acoustic modems 130228 

 

$STITLE Multicommodity network flow formulation, DAD with a dual-ILP 

formulation of the AD subproblem 

 

$INLINECOM { } 

 

 OPTIONS 

 

   SOLPRINT =      OFF, 

   DECIMALS =        1, 

   LIMCOL   =       0, 

   LIMROW   =       0, 

   RESLIM   =     3600, {max seconds} 

   ITERLIM  = 99999999, {max iterations} 

   OPTCR    =     0.01, 

   LP       =    CPLEX, 

   MIP      =    CPLEX 

 ; 

 

 FILE out /SUBNET_DAD_KILP.out/; 

 PUT out; 

 

 PUT 'SUBNET 2.0 130228' / ; 

 PUTCLOSE out; 

 

 file opt /cplex.opt/ ; 

 put opt; 

 put 'startalg 1' / ; 

 put 'subalg 1' / ; 

 put 'brdir 1' / ; 

 put '*mipemphasis 4' / ; {1 for feasibility, or 4 for hidden feasible 

solutions} 

 put 'cuts no' / ; 

 put 'heurfreq -1' / ; 

 put '*threads 0' / ; 

 put '*parallelmode 1' / ; 

 putclose opt; 

 

 put out; 

 SETS 

   n nodes / 

     n001*n225 

   / 

 

{this initial s and t placement is for network configuration A} 

   s(n) / 

     n016 

     n113 

     n211 

   / 

 

t(n) / 

     n015 

     n225 
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   / 

 

   arc(n,n) 

   impact(n,n) 

   d /d00*d99/ 

; 

 

 alias(n,i,j,iprime,jprime,k); 

 SCALAR 

   q {cost for undelivered packet} 

   p {cost for delivering a packet over an attacked arc} 

   sidelen /5/ {distance between adjacent cells, nm} 

   maxdist /25/ {max distance between nodes for a connection to exist} 

   max_repeaters /11/ {remember to count the access points and the gateway!} 

   max_attacks /2/ {set this to 0 when solving for initial placement with no 

attacks, varied from 2 to 9 to find the number of attacks to completely block 

all flow in a network} 

   attack_arc /8/ {the effective radius of an attack, when a node i is attacked 

all adjacent nodes are affected} 

   card_t 

   card_s 

   rect_wd /15/ 

   rect_ht /15/ 

 ; 

 card_t = SUM(t(i),1); 

 card_s = SUM(s(i),1); 

 

 q = CEIL(rect_wd*sidelen/maxdist + rect_ht*sidelen/maxdist); 

 p = q+1; 

 

VARIABLES 

   Z 

; 

POSITIVE VARIABLES 

   E(i) 

   F(i,k) 

   Y(i,j,k) 

 ; 

 

 SCALARS 

   d_x 

   d_y 

   dist 

   x_iter 

   r_iter 

   max_r_iters /30/ {varied up to 75 to obtain convergence, set this to 1 when 

solving for initial placement with no attacks} 

   lb_DAD 

   ub_DAD 

   lb_AD 

   ub_AD 

   is_error 

   epsilon_DAD 

   epsilon_DAD_M 

   epsilon_AD 

 ; 

 

 SETS 

   xbar(iprime) 

   xbard(iprime,d) 

   rbar(i) 

   xbest(iprime) 
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   rbest(i) 

 ; 

 

 epsilon_DAD = 0.15; {this was varied to get converge for placements B, C, and 

D} 

 epsilon_AD  = 0.01; 

 epsilon_DAD_M = 0.05; 

 

{determining the arc set} 

 LOOP((i,j), 

   d_x = sidelen*ABS(MOD(ORD(i)-1,rect_wd)-MOD(ORD(j)-1,rect_wd)); 

   d_y = sidelen*ABS(CEIL(ORD(i)/rect_ht)-CEIL(ORD(j)/rect_ht)); 

   dist = SQRT(SQR(d_x)+SQR(d_y)); 

   if( dist<=maxdist, 

     arc(i,j) = yes; 

   ); 

 ); 

 

 {determining the subset of attacked nodes} 

 LOOP((i,iprime), 

   d_x = sidelen*ABS(MOD(ORD(i)-1,rect_wd)-MOD(ORD(iprime)-1,rect_wd)); 

   d_y = sidelen*ABS(CEIL(ORD(i)/rect_ht)-CEIL(ORD(iprime)/rect_ht)); 

   dist = SQRT(SQR(d_x)+SQR(d_y)); 

   if( dist<=attack_arc, 

     impact(i,iprime) = yes; 

   ); 

 ); 

 

 EQUATIONS 

   FLOW_OBJ 

   FLOW_BALANCE(i,k) 

   CONTROL_FLOW(i,k) 

   DESIGN_CONTROL_FLOW(i,k) 

   DESIGN_REPEATER_BUDGET 

   DUAL_OBJ 

   DUAL_Y(i,j,k) 

   DUAL_E(k) 

   DUAL_F(i,k) 

   DUAL_ATTACK_BUDGET 

   DUAL_UNIQUE_ATTACK(d) 

   DAD_OBJ 

   DAD_CUT(k,d) 

   DAD_FLOW_BALANCE(i,k,d) 

   DAD_CONTROL_FLOW(i,k,d) 

   DAD_REPEATER_BUDGET 

   DAD_LB 

 ; 

 

FLOW_OBJ.. 

Z =E= q*SUM(s(i), E(i)) + 

             sum((i,j,k)$(arc(i,j) and s(k)), 

                  (1 + p*sum(iprime$(impact(i,iprime) and xbar(iprime)),1) 

                     + p*sum(jprime$(impact(j,jprime) and 

xbar(jprime)),1))*Y(i,j,k)) 

 ; 

 FLOW_BALANCE(i,k)$s(k).. {NODEPI(i,k)} 

   SUM(arc(i,j), Y(i,j,k)) - SUM(arc(j,i),Y(j,i,k)) + E(k)$sameas(i,k) + 

F(i,k)$t(i) =E=  1$sameas(i,k) 

 ; 

 CONTROL_FLOW(i,s(k))$(not s(i) and not t(i)).. {MU(i,k)} 

   SUM(arc(i,j),Y(i,j,k)) {+ E(k)$sameas(i,k) + F(i,k)$t(i)} =L= 1$rbar(i) 

 ; 
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 MODEL SUBNET_OPERATOR / 

   FLOW_OBJ 

   FLOW_BALANCE 

   CONTROL_FLOW 

 /; 

 

 VARIABLES 

   NODEPI(i,k) 

 ; 

 POSITIVE VARIABLES 

   MU(i,k) 

 ; 

 BINARY VARIABLES 

   X(iprime) 

 ; 

 

 DUAL_OBJ.. 

   Z =E= SUM(s(k), NODEPI(k,k)) - SUM((rbar(i),s(k)), MU(i,k)) 

 ; 

 

 DUAL_Y(i,j,k)$(arc(i,j) and s(k)).. 

   NODEPI(i,k) - NODEPI(j,k) - MU(i,k) 

     - SUM(impact(i,iprime), p*X(iprime)) - SUM(impact(j,jprime), p*X(jprime)) 

=L= 1 

 ; 

 

 DUAL_E(s(k)).. 

   NODEPI(k,k) - MU(k,k) =L= q 

 ; 

 

 DUAL_F(t(i),s(k)).. 

   NODEPI(i,k) - MU(i,k) =L= 0 

 ; 

 

 DUAL_ATTACK_BUDGET.. 

   SUM(iprime,X(iprime)) =L= max_attacks 

 ; 

 

 DUAL_UNIQUE_ATTACK(d)$(ORD(d)<=r_iter).. 

   SUM(xbard(iprime,d),X(iprime)) =L= max_attacks - 1 

 ; 

 

 MODEL SUBNET_DUALILP / 

   DUAL_OBJ 

   DUAL_Y 

   DUAL_E 

   DUAL_F 

   DUAL_ATTACK_BUDGET 

 /; 

 

 MODEL SUBNET_DUALILP_UNIQUE / 

   DUAL_OBJ 

   DUAL_Y 

   DUAL_E 

   DUAL_F 

   DUAL_ATTACK_BUDGET 

   DUAL_UNIQUE_ATTACK 

 /; 

 

VARIABLE 

   Z_DAD(k) 
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 ; 

 POSITIVE VARIABLES 

   YD(i,j,k,d) 

   FD(i,k,d) 

   ED(i,d) 

 ; 

 BINARY VARIABLES 

   R(i) 

 ; 

 

 DAD_OBJ.. 

   Z =E= SUM(s(k), Z_DAD(k)) 

 ; 

 DAD_CUT(s(k),d)$(ORD(d)<=r_iter).. 

   Z_DAD(k) =G= q*ED(k,d) + 

             sum(arc(i,j), 

                  (1 + p*sum(iprime$(impact(i,iprime) and xbard(iprime,d)),1) 

                     + p*sum(jprime$(impact(j,jprime) and 

xbard(jprime,d)),1))*YD(i,j,k,d)) 

 ; 

 DAD_FLOW_BALANCE(i,k,d)$(s(k) and ORD(d)<=r_iter).. 

   SUM(arc(i,j), YD(i,j,k,d)) - SUM(arc(j,i),YD(j,i,k,d)) + ED(k,d)$sameas(i,k) 

+ FD(i,k,d)$t(i) =E=  1$sameas(i,k) 

 ; 

 DAD_CONTROL_FLOW(i,s(k),d)$(not s(i) and not t(i) and ORD(d)<=r_iter).. 

   SUM(arc(i,j), YD(i,j,k,d)) {+ ED(k,d)$sameas(i,k) + FD(i,k,d)$t(i)} =L= R(i) 

 ; 

 DAD_REPEATER_BUDGET.. 

   SUM(i,R(i)) =L= max_repeaters 

 ; 

 DAD_LB.. 

   SUM(s(k),Z_DAD(k)) =G= lb_DAD 

 ; 

 

 MODEL SUBNET_DAD_MASTER / 

   DAD_OBJ 

   DAD_CUT 

   DAD_FLOW_BALANCE 

   DAD_CONTROL_FLOW 

   DAD_REPEATER_BUDGET 

/; 

 

 DESIGN_CONTROL_FLOW(i,s(k))$(not s(i) and not t(i)).. 

   SUM(arc(i,j), Y(i,j,k)) {+ E(k)$sameas(i,k) + F(i,k)$t(i)} =L= R(i) 

 ; 

 

 DESIGN_REPEATER_BUDGET.. 

   SUM(i,R(i)) =L= max_repeaters 

 ; 

 

 MODEL SUBNET_DESIGN / 

   FLOW_OBJ 

   FLOW_BALANCE 

   DESIGN_CONTROL_FLOW 

   DESIGN_REPEATER_BUDGET 

 /; 

 

 {Models up to here, rest of file is algorithm} 

 

*Protect s(i) and t(i) from attack 

 LOOP(impact(i,iprime)$(s(i) or t(i)), 

   X.fx(iprime) = 0 ; 
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 ); 

 

 SUBNET_DAD_MASTER.optcr = epsilon_DAD_M ; 

 

 SUBNET_DAD_MASTER.optfile = 1; 

 SUBNET_DUALILP.optcr = epsilon_AD; 

 

 SUBNET_DESIGN.optfile = 1; 

 

 xbar(i) = 0; 

 IF(max_repeaters < card(s)+card(t), 

   PUT 'Insufficient repeaters to build network.' / / ; 

 ELSE 

   LOOP(s(i), 

     R.fx(i) = 1; 

   ); 

   LOOP(t(i), 

     R.fx(i) = 1; 

   ); 

 

 {set initial solution Rbar} 

 {set initial bounds for DAD} 

 SOLVE SUBNET_DESIGN using MIP minimizing Z; 

 

 rbar(i)=no; 

 LOOP(i$(R.L(i)>0.5), 

   rbar(i) = yes; 

 ); 

 

 PUT SUM(i,R.L(i)):6:0,' Total Repeaters' / ; 

 PUT 'Initial Repeater Locations' / ; 

 PUT 'Site      Row       Column' / ; 

 LOOP(rbar(i), 

   PUT i.tl:7, (CEIL(ORD(i)/15)):8:0, (MOD(ORD(i)-1,15)+1):8:0 / ; 

 ); 

 PUT / ; 

 LOOP(i, 

     IF(rbar(i), 

       If(s(i), 

         PUT 'S ' ; 

       ); 

       IF(t(i), 

         PUT 'T ' ; 

       ); 

       IF(not t(i) and not s(i), 

         PUT 'R ' ; 

       ); 

     else 

       PUT '. '; 

     ); 

   if(MOD(ORD(i),15)=0, 

     PUT / ; 

   ); 

 ); 

 PUT / / ; 

 PUT 'Arc Flows' / ; 

 LOOP(arc(i,j)$(SUM(s(k),Y.L(i,j,k))>eps), 

   PUT i.tl:10, '  ', j.tl:10, '  ', (SUM(s(k),Y.L(i,j,k))):5:2 / ; 

 ); 

 PUT / / ; 

 

 PUT 'Blocked Flows' / ; 
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 LOOP(s(i)$(E.L(i)>eps), 

   PUT i.tl:10, '  ', E.L(i) / ; 

 ); 

 PUT / / ; 

 

 lb_DAD = Z.L ; 

 ub_DAD = +inf ; 

 r_iter = 0; 

 SUBNET_DUALILP.optcr = epsilon_AD; 

 

 rbest(i) = no; 

 xbest(iprime) = no; 

 xbard(iprime,d) = no; 

 

 SCALAR 

   num_repeats 

 ; 

 

 put 'DAD   lb=',lb_DAD:12:6 / ; 

 {while DAD relative gap > epsilon and r_iter < max_r_iters} 

 while(ub_DAD - lb_DAD > epsilon_DAD*lb_DAD, 

  while(r_iter < max_r_iters, 

    {solve AD: two ways to do this, either dualILP or Benders. This is 

dualILP.} 

    {set initial solution xbar} 

    solve SUBNET_DUALILP using MIP maximizing Z; 

    {if AD solution lower than DAD upper bound} 

    if(SUBNET_DUALILP.objest < ub_DAD, 

      {update DAD UB} 

      ub_DAD = SUBNET_DUALILP.objest ; 

      put 'DAD * ub=',ub_DAD:12:6 / ; 

      {update incumbent defense} 

      rbest(i) = no; 

      loop(rbar(i), 

        rbest(i) = yes ; 

      ); 

      {record attack corresponding to incumbent defense} 

      xbest(iprime) = no; 

      LOOP(iprime$(X.L(iprime)>0.5), 

        xbest(iprime) = yes; 

      ); 

    ); 

    if(r_iter>1, 

      {check for repeated attack plan} 

      num_repeats = 0; 

      loop(d$(ord(d)<=r_iter), 

        if( (SUM(xbard(iprime,d), X.L(iprime)) >= max_attacks), 

          num_repeats = num_repeats + 1; 

        ); 

      ); 

      if(num_repeats >= 1, 

        put ' repeat attack found, re-solving for unique attack' / ; 

        solve SUBNET_DUALILP_UNIQUE using MIP maximizing Z; 

      ); 

    ); 

    {Solve DAD Master for next r_iter} 

    r_iter = r_iter + 1; 

    PUT 'r_iter: ',r_iter:4:0 / ; 

    loop(d$(ord(d)=r_iter), 

      loop(iprime$(X.L(iprime)>0.5), 

        put '    atk: ', iprime.tl:5 / ; 

        xbard(iprime,d) = yes; 
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      ); 

    ); 

    solve SUBNET_DAD_MASTER using MIP minimizing Z; 

    {if master solution > LB} 

    if(SUBNET_DAD_MASTER.objest > lb_DAD, 

      {update LB} 

      lb_DAD = SUBNET_DAD_MASTER.objest; 

      put 'DAD   lb=',lb_DAD:12:6 / ; 

    ); 

    {update design Rbar = R.L} 

    rbar(i) = no; 

    loop(i$(R.L(i)>0.5), 

      put '    def: ', i.tl:5 / ; 

      rbar(i) = yes; 

    ); 

  ); 

 ); 

 

 rbar(i) = no; 

 LOOP(rbest(i), 

   rbar(i) = yes; 

 ); 

 

 xbar(iprime)=no; 

 LOOP(xbest(iprime), 

   xbar(iprime) = yes; 

 ); 

 

 SOLVE SUBNET_OPERATOR USING MIP MINIMIZING Z; 

 

PUT SUM(i,R.L(i)):6:0,' Total Repeaters' / ; 

PUT 'Optimal Repeater Locations' / ; 

 PUT 'Site      Row      Column' / ; 

 LOOP(rbar(i), 

   PUT i.tl:7, (CEIL(ORD(i)/15)):8:0, (MOD(ORD(i)-1,15)+1):8:0 / ; 

 ); 

 PUT / ; 

 LOOP(i, 

   if(xbar(i), 

     if(rbar(i), 

       PUT 'Y '; 

     else 

       put 'X '; 

     ); 

   else 

     IF(rbar(i), 

       If(s(i), 

         PUT 'S ' ; 

       ); 

       IF(t(i), 

         PUT 'T ' ; 

       ); 

       IF(not t(i) and not s(i), 

         PUT 'R ' ; 

       ); 

     else 

       PUT '. '; 

     ); 

   ); 

   if(MOD(ORD(i),15)=0, 

     PUT / ; 

   ); 
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 ); 

 PUT / / ; 

 

 PUT 'Attacks' / ; 

 LOOP(xbar(iprime), 

   PUT iprime.tl:10, (CEIL(ORD(iprime)/15)):5:0, (MOD(ORD(iprime)-1,15)+1):5:0 

/ ; 

 ); 

 PUT / / ; 

 

 PUT 'Arc Flows' / ; 

 LOOP(arc(i,j)$(SUM(s(k),Y.L(i,j,k))>eps), 

   PUT i.tl:10, '  ', j.tl:10, '  ', (SUM(s(k),Y.L(i,j,k))):5:2 / ; 

 ); 

 PUT / / ; 

 

 PUT 'Blocked Flows' / ; 

 LOOP(s(i)$(E.L(i)>eps), 

   PUT i.tl:10, '  ', E.L(i) / ; 

 ); 

 

 PUTCLOSE out; 
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APPENDIX B.  RESULTING GAMS OUTPUT FILE FOR 

NETWORK CONFIGURATION A WITH TWO ATTACKS  

10 Total Repeaters 

Initial Repeater Locations 

Site      Row       Column 

n015          1      15 

n016          2       1 

n021          2       6 

n026          2      11 

n113          8       8 

n176         12      11 

n211         15       1 

n216         15       6 

n220         15      10 

n225         15      15 

 

. . . . . . . . . . . . . . T 

S . . . . R . . . . R . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . S . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . R . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

S . . . . R . . . R . . . . T 

 

Arc Flows 

n016        n021         1.00 

n021        n026         1.00 

n026        n015         1.00 

n113        n176         1.00 

n176        n225         1.00 

n211        n216         1.00 

n216        n220         1.00 

n220        n225         1.00 

 

Blocked Flows 

 

 

DAD   lb=    8.000000 

DAD * ub=   15.000000 

 

 

 

r_iter:    1 

    atk: n160 

    atk: n200 

DAD   lb=    9.000000 

    def: n010 

    def: n015 

    def: n016 

    def: n021 
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    def: n056 

    def: n113 

    def: n170 

    def: n211 

    def: n225 

 

r_iter:    2 

    atk: n005 

    atk: n040 

DAD   lb=   10.000000 

    def: n015 

    def: n016 

    def: n072 

    def: n079 

    def: n113 

    def: n154 

    def: n211 

    def: n215 

    def: n220 

    def: n225 

 

r_iter:    3 

    atk: n056 

    atk: n204 

    def: n015 

    def: n016 

    def: n065 

    def: n113 

    def: n154 

    def: n162 

    def: n211 

    def: n216 

    def: n221 

    def: n225 

 

r_iter:    4 

    atk: n146 

    atk: n205 

    def: n005 

    def: n010 

    def: n015 

    def: n016 

    def: n056 

    def: n064 

    def: n113 

    def: n162 

    def: n170 

    def: n211 

    def: n225 

DAD * ub=   13.000000 

 

r_iter:    5 

    atk: n040 

    atk: n146 

    def: n015 

    def: n016 

    def: n072 

    def: n079 

    def: n113 

    def: n154 

    def: n162 

    def: n211 
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    def: n216 

    def: n221 

    def: n225 

DAD * ub=   12.000000 

 

r_iter:    6 

    atk: n056 

    atk: n146 

    def: n015 

    def: n016 

    def: n050 

    def: n072 

    def: n113 

    def: n154 

    def: n176 

    def: n211 

    def: n225 

 

r_iter:    7 

    atk: n058 

    atk: n162 

    def: n010 

    def: n015 

    def: n016 

    def: n056 

    def: n079 

    def: n113 

    def: n154 

    def: n162 

    def: n176 

    def: n211 

    def: n225 

 

r_iter:    8 

    atk: n040 

    atk: n161 

    def: n005 

    def: n015 

    def: n016 

    def: n056 

    def: n064 

    def: n072 

    def: n113 

    def: n170 

    def: n176 

    def: n211 

    def: n225 

 

r_iter:    9 

    atk: n056 

    atk: n160 

    def: n015 

    def: n016 

    def: n050 

    def: n056 

    def: n072 

    def: n113 

    def: n162 

    def: n170 

    def: n176 

    def: n211 

    def: n225 
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r_iter:   10 

    atk: n056 

    atk: n161 

DAD   lb=   11.000000 

    def: n015 

    def: n016 

    def: n065 

    def: n069 

    def: n113 

    def: n128 

    def: n170 

    def: n176 

    def: n191 

    def: n211 

    def: n225 

 

r_iter:   11 

    atk: n160 

    atk: n205 

    def: n015 

    def: n016 

    def: n021 

    def: n065 

    def: n072 

    def: n113 

    def: n128 

    def: n170 

    def: n191 

    def: n211 

    def: n225 

 

r_iter:   12 

    atk: n056 

    atk: n175 

    def: n010 

    def: n015 

    def: n016 

    def: n051 

    def: n079 

    def: n113 

    def: n154 

    def: n211 

    def: n217 

    def: n222 

    def: n225 

 

r_iter:   13 

    atk: n009 

    atk: n208 

    def: n015 

    def: n016 

    def: n035 

    def: n079 

    def: n113 

    def: n128 

    def: n170 

    def: n177 

    def: n191 

    def: n211 

    def: n225 

 



 85 

r_iter:   14 

    atk: n019 

    atk: n142 

    def: n015 

    def: n016 

    def: n072 

    def: n079 

    def: n113 

    def: n128 

    def: n162 

    def: n170 

    def: n191 

    def: n211 

    def: n225 

 

r_iter:   15 

    atk: n056 

    atk: n176 

    def: n015 

    def: n016 

    def: n056 

    def: n065 

    def: n113 

    def: n114 

    def: n129 

    def: n163 

    def: n170 

    def: n211 

    def: n225 

 

r_iter:   16 

    atk: n040 

    atk: n147 

DAD   lb=   11.142857 

    def: n010 

    def: n015 

    def: n016 

    def: n050 

    def: n056 

    def: n067 

    def: n113 

    def: n170 

    def: n211 

    def: n220 

    def: n225 

 

r_iter:   17 

    atk: n009 

    atk: n040 

    def: n005 

    def: n010 

    def: n015 

    def: n016 

    def: n065 

    def: n069 

    def: n113 

    def: n162 

    def: n170 

    def: n211 

    def: n225 

 

r_iter:   18 
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    atk: n010 

    atk: n146 

    def: n015 

    def: n016 

    def: n021 

    def: n050 

    def: n056 

    def: n113 

    def: n154 

    def: n172 

    def: n211 

    def: n221 

    def: n225 

 

r_iter:   19 

    atk: n040 

    atk: n205 

    def: n015 

    def: n016 

    def: n021 

    def: n026 

    def: n054 

    def: n07 

    def: n079 

    def: n113 

    def: n154 

    def: n211 

    def: n225 

 

r_iter:   20 

    atk: n040 

    atk: n056 

    def: n015 

    def: n016 

    def: n056 

    def: n064 

    def: n113 

    def: n154 

    def: n159 

    def: n162 

    def: n193 

    def: n211 

    def: n225 

 

r_iter:   21 

    atk: n040 

    atk: n177 

    def: n015 

    def: n016 

    def: n072 

    def: n079 

    def: n113 

    def: n154 

    def: n158 

    def: n207 

    def: n211 

    def: n215 

    def: n225 

 

r_iter:   22 

    atk: n056 

    atk: n191 
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    def: n015 

    def: n016 

    def: n021 

    def: n050 

    def: n056 

    def: n113 

    def: n154 

    def: n173 

    def: n211 

    def: n222 

    def: n225 

 

r_iter:   23 

    atk: n040 

    atk: n206 

    def: n005 

    def: n015 

    def: n016 

    def: n027 

    def: n053 

    def: n064 

    def: n072 

    def: n113 

    def: n170 

    def: n211 

    def: n225 

 

r_iter:   24 

    atk: n011 

    atk: n071 

    def: n010 

    def: n015 

    def: n016 

    def: n065 

    def: n113 

    def: n162 

    def: n170 

    def: n174 

    def: n179 

    def: n211 

    def: n225 

 

r_iter:   25 

    atk: n146 

    atk: n180 

    def: n015 

    def: n016 

    def: n050 

    def: n072 

    def: n113 

    def: n154 

    def: n159 

    def: n162 

    def: n164 

    def: n211 

    def: n225 

 

r_iter:   26 

    atk: n058 

    atk: n148 

    def: n015 

    def: n016 
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    def: n056 

    def: n064 

    def: n113 

    def: n154 

    def: n159 

    def: n162 

    def: n207 

    def: n211 

    def: n225 

 

r_iter:   27 

    atk: n063 

    atk: n138 

    def: n012 

    def: n015 

    def: n016 

    def: n065 

    def: n113 

    def: n162 

    def: n170 

    def: n174 

    def: n211 

    def: n223 

    def: n225 

 

r_iter:   28 

    atk: n146 

    atk: n173 

    def: n010 

    def: n015 

    def: n016 

    def: n056 

    def: n065 

    def: n069 

    def: n113 

    def: n162 

    def: n170 

    def: n211 

    def: n225 

 

r_iter:   29 

    atk: n055 

    atk: n146 

    def: n015 

    def: n016 

    def: n050 

    def: n072 

    def: n113 

    def: n162 

    def: n170 

    def: n174 

    def: n211 

    def: n220 

    def: n225 

 

r_iter:   30 

    atk: n034 

    atk: n154 

    def: n015 

    def: n016 

    def: n028 

    def: n065 
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    def: n069 

    def: n072 

    def: n113 

    def: n211 

    def: n216 

    def: n221 

    def: n225 

 

11 Total Repeaters 

Optimal Repeater Locations 

Site      Row      Column 

n015          1      15 

n016          2       1 

n072          5      12 

n079          6       4 

n113          8       8 

n154         11       4 

n162         11      12 

n211         15       1 

n216         15       6 

n221         15      11 

n225         15      15 

 

. . . . . . . . . . . . . . T 

S . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . X . . . . 

. . . . . . . . . . . R . . . 

. . . R . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . S . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . X . . . . 

. . . R . . . . . . . R . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

S . . . . R . . . . R . . . T 

 

Attacks 

n056          4   11 

n146         10   11 

 

Arc Flows 

n016        n079         1.00 

n079        n154         1.00 

n113        n154         1.00 

n154        n216         2.00 

n211        n216         1.00 

n216        n221         3.00 

n221        n225         3.00 

 

Blocked Flows 
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